跳至主要内容

"实践一号":备份星作用却大于东方红一号

1971年3月3日,基于"东方红一号"备份星研制的"实践一号"卫星发射成功,运行在近地点高度为266千米、远地点高度为1826千米、倾角为69.60°、周期为106分钟的轨道上。这是我国自行研制的第二颗人造卫星,此时距"东方红一号"卫星发射成功不到一年。与广为人知的"东风红一号"卫星相比,虽然"实践一号"卫星的知名度要小不少,但其作用却不小,单纯从科研的角度看,甚至要比"东方红一号"更大一些,毕竟"东方红一号"是我国自行研制的首颗卫星,主要宣示我国在这一领域的突破,象征意义更大一些,而"实践一号"则实打实的承担着重要的科研任务。


在我国的卫星研制体系中,每一型卫星都有特定的使命任务,具体到"实践"系列卫星,其主要担负科学探测与技术试验任务,就在2017年4月12日,我国刚刚发射成功"实践十三号"卫星,该星是我国首颗高通量通信卫星,通信总容量达20Gbps,超过我国已研制发射的通信卫星容量总和。那么,作为我国首颗科研卫星的"实践一号"又承担着什么任务呢?

大致来说,"实践一号"承担的科学试验任务可分为两类:第一类主要是各种高空环境参数的测量,如我国高空磁场、X射线、宇宙射线总强度等,这也是我国第一次直接探测宇宙空间环境,相关测量数据则通过遥测系统发回地面。第二类则是测试一些卫星部件的工作状况,为今后我国卫星研制生产提供参照,如硅太阳能电池和镍镉蓄电池组成的电源系统长时间工作状况、主动无源温控系统的性能、遥测系统的寿命、无线电线路在空间环境下长期工作的性能等


"实践一号"卫星的研制始于1968年,1969年底开始模装,1970年5月确定最后的正样状态,随后各分系统又进行了大量试验、1971年1月3日起运前往发射试验场。该星采用1米直径的近球形72面全蒙皮骨架式结构,上下半球壳的梯形平面上各装有14块硅太阳能电池板。全星由结构、天线、跟踪、电源、温度控制、遥测及星上电路六个部分构成,其中结构、天线和跟踪系统基本延续了"东方红一号"卫星的设计,但为长期执行任务进行了适当改装。卫星采用自旋稳定姿态控制方式,其中间为一圆形密封舱,内装短波遥测、超短波信标机(202MHz)和银锌化学电池。在主舱周围与外壳之间安放4个小仪器舱

虽然"实践一号"1968年才开始研制,但关键子系统的研制却早已展开,比如硅太阳能电池和镍镉蓄电池组成的电源系统和主动无源温控系统,都是卫星中极为重要的部件,是保证卫星长期工作的基础,因此1965年便开始对其进行预研。对当时的科技工作者来说,并没有多少研制卫星的经验,一些关键子系统往往需要较长时间的研制才能保证性能和可靠性,如果和卫星同步研制,一旦出现技术障碍,势必影响全系统的完成。现在看来,正是当时"关键设备先行"的策略,保证了"实践一号"按时完成和高可靠性,

当时,由于当时我国空间技术刚刚处于开创阶段,"实践一号"研制过程中并没有设计规范进行参考,全凭设计人员和工人们高度的责任感,他们认真做好每一次地面试验,不放过每一个隐患,每一个部件都有专人负责,严格把握质量关,出现问题坚决返工,从而保证了"实践一号"任务的圆满成功。

如上文所述,"实践一号"是基于"东方红一号"备份星研制的,因此其应用了许多"东方红一号"上的零部件和设备,节省了人力、物力和时间,而这些零部件和社备,由于经历了"东方红一号"研制过程中严格的测试,已具有相当的可靠性,完全满足需要。事实上,在一定程度上说,我国在设计前两颗卫星时,便有了设备标准化、通用化的理念。

在轨道运行过程中,"实践一号"各子系统均经受住了考验,工作性能良好。值得一提的是,由于相关经验较少,研制"实践一号"的过程中,在元器件寿命和可靠性上并没有可供参照的数据,因此,其设计寿命只有一年。然而,实际使用表明,该星的设计极为成功,在轨运行时间长达八年多,期间各子系统性也表现良好,保障了科研试验任务的顺利进行,直到1979年6月11日,"实践一号"才坠落轨道。仅就八年寿命这一指标而言,在上世纪60年代美苏两国研制的卫星中也是不多见的。




评论

此博客中的热门博文

中国研制的这套地铁隧道施工利器,比变形金刚还炫酷

  人类的铁路建设至今已有近200年的历史。   1825年,世界上第一条永久性铁路,全长31.8公里的英国斯托克顿—达灵顿铁路正式通车,标志着近代铁路运输业的开端。 人类的第一条铁路   在过去,修建铁路全靠人拉肩扛。人们将用沥青浸过的枕木铺在路基上,再由几十个人一齐合作,将长长的铁轨搬起铺在枕木上。   用这种方式铺设的铁路位置误差大,铁轨之间还留有很大的缝隙,能够容许的列车通行时速也相当低。这样修建铁路的方式不仅效率极低,同时也是对劳动者的严重摧残,美国的太平洋铁路就被人称为"每根枕木下面都有一具华工的尸骨"。   随着时代进步,列车的运行越来越快,对轨道误差控制的要求也越来越高。尤其是现如今高速铁路与城市轨道交通的修建,对轨道的平整程度要求极高,已经不再采用传统的枕木,而是以预制混凝土板作为底座,其上安装的钢轨则是以很强的预应力被牢牢钉在混凝土板上的,不会因为温度变化而发生伸缩。这样的钢轨几十公里也没有一个缝隙,可以保障列车的高速通行。 高铁的路基   不过,要想铺设这样的铁轨,凭借人力是不可能完成的,这就需要自动铺轨车的帮助。 (一)传统铺轨车应用繁琐,需要专门为它建轨道   人们应用自动铺轨车的历史已有几十年。   它类似于一种复杂的门式起重机,伴随着铁路线的延伸而向前运行。它可以在人的操纵下将几十吨重的混凝土底板和钢轨精确地放置在指定位置,相比起人工铺设,大大提高了施工效率。   传统的铺轨车虽然铺设效率很高,但为它服务却需要大量的资源和工期,其中最麻烦之处就在于,铺轨车本身也要依靠轨道才能行进。它的专用轨道虽然无需像铁路主线上的铁轨那样精密,但仍然需要事先专门修建。   在本就十分狭窄的地下铁路隧道中修建专门轨道,施工难度高,工序极其繁琐。 传统铺轨车的施工现场   此外,由于传统铺轨车必须依托铁轨进行移动,因此根本没有自主的转场能力。要想运输它,只能先行拆卸,送到施工现场再进行组装。这极大增加了现场的工程量,占用了大量的劳动力,而且拖延了工期。 地铁的施工环境十分狭小,限制了工程设备的展开   为了提高生产力,工程师们急需一种使用灵活、转场方便、自动化水平更高的铺轨车。 (二)地铁隧道里的"变形金刚"?中国研发轮式铺轨车 ...

人类在金属焊接上有什么骚操作?来了解下搅拌摩擦焊~

金属中,由于质量较轻,铝和镁常常被用于航天航空器的结构中。然而,这些轻质金属的合金可焊接性极差,用普通的熔焊工艺进行焊接,很容易出现热裂纹、气孔和夹渣等缺陷。纵使高超的技术和工艺可以降低焊接缺陷产生的概率,但熔焊时高温带来的热量和毒烟,对操作者的健康也会是巨大的威胁。   那么,有没有一种焊接技术,可以从根本上解决这些问题呢?当然有,这就是我们今天要谈的搅拌摩擦焊。 (一)搅拌摩擦焊是什么?   说起焊接,首先让人想起的大多是高温、火花四溅、保护头盔,还有保护气体等等。焊接作为一种常见的工件连接技术,能够将两种或两种以上同种或异种材料通过原子或分子之间的结合和扩散连接成一体。   目前,焊接技术已然演变为一门集材料学、工程力学、自动控制技术的交叉性学科。虽然焊接方法仍然以熔焊、压焊、钎焊三种为基础,但其下衍生出了几十种不同的焊接技术,其中包括了生活中应用最广的手弧焊、先进的激光焊和摩擦焊等。 生活中常见的焊接作业场面   与常规摩擦焊类似,搅拌摩擦焊也是利用摩擦热与塑性变形热作为焊接热源。   常规摩擦焊焊接过程中材料在压力作用下相互摩擦(工件做回转、线性等形式的相对运动,摩擦产生热量),摩擦热使得焊接的接触端面上很快形成热塑性层,接触面及附近区域温度上升,在顶锻压力的作用下,界面处的材料产生塑性变形及流动,最终形成了质量良好的焊接接头。   而搅拌摩擦焊在焊接过程中,被焊接工件之间不做相对运动,摩擦热是由搅拌针伸入工件的接缝处通过焊接工具的焊头做高速旋转运动,使其与焊接工件材料产生摩擦。 搅拌摩擦焊原理示意图,焊接过程可简化为旋转-插入-塑化-焊接   焊接过程中,搅拌针高速旋转并在压力作用下插入材料内部进行搅拌摩擦生热,同时焊头的肩部与工件表面摩擦生热,焊头边高速旋转边沿工件的接缝方向与工件发生相对移动,于是焊头前面的材料发生强烈塑性变形,随着焊头沿着焊缝走向移动,高度塑性变形的材料不断被搅拌针搅拌到背后,在主轴离开后,热塑性状态的材料冷却固化,从而形成一条搅拌摩擦焊的焊缝。   搅拌摩擦焊的技术原理并不复杂,需要控制的参数也不多,不过这并不代表搅拌摩擦焊设备没有技术难度,实际上,焊接设备及夹具的刚性对搅拌摩擦焊是极端重要的,对大型工件的焊接而言尤甚。   摩擦焊技术焊接质量稳定、焊件尺寸精度高、焊接生产率高、...

这款新型声呐,让中国反潜技术跨入国际一流梯队

        反潜战最关键在于掌握潜艇踪迹,没有精确的目标信息,再强大的反潜火力也将无的放矢,而搜索潜艇最重要的手段便是各种类型的声呐。 (一)何为声呐?   声呐是利用水中声波对水下目标进行探测、定位和通信的电子设备,能够判断海洋中物体的存在、位置及类型,同时也用于水下信息的传输。 声呐原理图   水面舰艇声呐按照工作模式分为主动声呐与被动声呐,以安装部署位置又分为舰壳声呐与拖曳声呐。   早期声呐均采取龙骨以下安装并做成流线型的舰壳声呐部署方式,舰壳声呐最大的优点是直接固定在水线下,舰体部分阻力较低,不影响水面舰艇机动,且舰艇高速机动时仍可有效工作,直到今天舰壳声呐仍然是水面舰艇反潜探测的重要探测设备。   如今中国多型水面舰艇也可明显看到安装在球鼻首的主/被动中频舰壳声呐。 现代军舰的球鼻艏直接与海水联通,内部通常安装主动声呐的中频率水声换能器,用来发射和接收超声波信号   不过,舰壳声呐也有一些不足之处,它的探测距离近,且易受噪音影响。 声速从海面起随水深增加时,声信号因折射作用而被水体表层的波导通道捕获,因而布设位置较浅的舰壳声呐作用距离都不远 (二)拖曳声呐:离得远听得清   为克服传播损耗与舰体自噪音对声呐的影响,最好的办法即是将声呐布设在远离舰体的水下,也就是拖曳声呐。   拖曳声呐一般长1-2千米,它并不是水平漂浮的,而是斜向下深入500米左右的水中,是潜艇所能达到的深度,以避开温跃层、盐跃层的限制更好地监听周边环境噪音。   拖曳声呐又可细分为拖曳体声呐与拖曳线列声呐。前者可理解为将原有的舰壳声呐拖曳于水下密封拖曳体内,从而避开各跃变层与舰体自噪音的影响。不过它与舰壳声呐一样因拖受到基阵布置空间的限制,声阵孔径难以进一步增大,工作频率继续降低。   而拖曳线列声呐则是将一定间隔的水听器,以线列阵型式布置到具有中性浮力的透声保护导管内,由于摆脱了舰壳与拖体的束缚,线列阵声呐要提高水听器数量只需增长拖体长度即可获得更长的基线长度与更大的基阵,从而利于探测远程目标。 拖曳线列声呐在柔性软管里布满了十分灵敏的水听器,图为国产SJG-206拖曳线列阵声呐   拖曳线列阵声呐的另一个优势则是因工作深度较深,在深海区域可充分利用水声汇聚区效益提高探测距离...